The Ihara Zeta Function of the Infinite Grid
نویسنده
چکیده
The infinite grid is the Cayley graph of Z × Z with the usual generators. In this paper, the Ihara zeta function for the infinite grid is computed using elliptic integrals and theta functions. The zeta function of the grid extends to an analytic, multivalued function which satisfies a functional equation. The set of singularities in its domain is finite. The grid zeta function is the first computed example which is non-elementary, and which takes infinitely many values at each point of its domain. It is also the limiting value of the normalized sequence of Ihara zeta functions for square grid graphs and torus graphs.
منابع مشابه
An Infinite Family of Graphs with the Same Ihara Zeta Function
In 2009, Cooper presented an infinite family of pairs of graphs which were conjectured to have the same Ihara zeta function. We give a proof of this result by using generating functions to establish a one-to-one correspondence between cycles of the same length without backtracking or tails in the graphs Cooper proposed. Our method is flexible enough that we are able to generalize Cooper’s graph...
متن کاملProperties Determined by the Ihara Zeta Function of a Graph
In this paper, we show how to determine several properties of a finite graph G from its Ihara zeta function ZG(u). If G is connected and has minimal degree at least 2, we show how to calculate the number of vertices of G. To do so we use a result of Bass, and in the case that G is nonbipartite, we give an elementary proof of Bass’ result. We further show how to determine whether G is regular, a...
متن کاملZeta Functions of Discrete Groups Acting on Trees
This paper generalizes Bass’ work on zeta functions for uniform tree lattices. Using the theory of von Neumann algebras, machinery is developed to define the zeta function of a discrete group of automorphisms of a bounded degree tree. The main theorems relate the zeta function to determinants of operators defined on edges or vertices of the tree. A zeta function associated to a non-uniform tree...
متن کاملThe Ihara zeta function for graphs and 3-adic convergence of the Sierpiński gasket
Imagine you were going for a run downtown. You have a set distance you want to go, but you don’t like running the same path two days in a row. You don’t like stopping to turn around and take the same road since this breaks your stride, and just repeating some loop multiple times makes you bored. So, how many options do you have? This situation could be modeled with graph theory, where each inte...
متن کاملThe Ihara-Selberg zeta function for PGL3 and Hecke operators
A weak version of the Ihara formula is proved for zeta functions attached to quotients of the Bruhat-Tits building of PGL3. This formula expresses the zeta function in terms of Hecke-Operators. It is the first step towards an arithmetical interpretation of the combinatorially defined zeta function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014